Source code for qinfer.simple_est

#!/usr/bin/python
# -*- coding: utf-8 -*-
##
# simple_est.py: Simplified estimation functions for common experiments.
##
# © 2017, Chris Ferrie ([email protected]) and
#         Christopher Granade ([email protected]).
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     1. Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#
#     2. Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#
#     3. Neither the name of the copyright holder nor the names of its
#        contributors may be used to endorse or promote products derived from
#        this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
##

## FEATURES ###################################################################

from __future__ import absolute_import
from __future__ import division

## EXPORTS ###################################################################

__all__ = [
    'simple_est_prec',
    'simple_est_rb',
    # TODO:
    # 'simple_est_rabi'
]

## IMPORTS ###################################################################

import numpy as np

from qinfer.smc import SMCUpdater
from qinfer.test_models import SimplePrecessionModel
from qinfer.rb import RandomizedBenchmarkingModel
from qinfer.derived_models import BinomialModel
from qinfer.distributions import UniformDistribution, PostselectedDistribution
from qinfer.resamplers import LiuWestResampler

# We want to be able to support Pandas without requiring it, so a conditional
# import is required.
try:
    import pandas as pd
except:
    pd = None

## FUNCTIONS #################################################################

def data_to_params(data,
        expparams_dtype,
        col_outcomes=(0, 'counts'),
        cols_expparams=None
    ):
    """
    Given data as a NumPy array, separates out each column either as
    the outcomes, or as a field of an expparams array. Columns may be specified
    either as indices into a two-axis scalar array, or as field names for a one-axis
    record array.

    Since scalar arrays are homogenous in type, this may result in loss of precision
    due to casting between data types.
    """
    BY_IDX, BY_NAME = range(2)

    is_exp_scalar = np.issctype(expparams_dtype)
    is_data_scalar = np.issctype(data.dtype) and not data.dtype.fields

    s_ = (
        (lambda idx: np.s_[..., idx[BY_IDX]])
        if is_data_scalar else
        (lambda idx: np.s_[idx[BY_NAME]])
    )

    outcomes = data[s_(col_outcomes)].astype(int)

    # mk new slicer t

    expparams = np.empty(outcomes.shape, dtype=expparams_dtype)
    if is_exp_scalar:
        expparams[:] = data[s_(cols_expparams)]
    else:
        for expparams_key, column in cols_expparams.items():
            expparams[expparams_key] = data[s_(column)]

    return outcomes, expparams

def load_data_or_txt(data, dtype):
    if isinstance(data, np.ndarray):
        return data
    elif pd is not None and isinstance(data, pd.DataFrame):
        return data.to_records(index=False)

    elif hasattr(data, 'read') or isinstance(data, str):
        data = np.loadtxt(data, dtype=dtype, delimiter=',')
        return data
    else:
        raise TypeError("Expected a filename, an array or a file-like object.")


def do_update(model, n_particles, prior, outcomes, expparams, return_all, resampler=None):
    updater = SMCUpdater(model, n_particles, prior,
        resampler=resampler
    )
    updater.batch_update(outcomes, expparams, resample_interval=1)

    mean = updater.est_mean()
    cov = updater.est_covariance_mtx()

    if model.n_modelparams == 1:
        mean = mean[0]
        cov = cov[0, 0]

    if not return_all:
        return mean, cov
    else:
        return mean, cov, {
            'updater': updater
        }

[docs]def simple_est_prec(data, freq_min=0.0, freq_max=1.0, n_particles=6000, return_all=False): """ Estimates a simple precession (cos²) from experimental data. Note that this model is mainly for testing purposes, as it does not consider the phase or amplitude of precession, leaving only the frequency. :param data: Data to be used in estimating the precession frequency. :type data: see :ref:`simple_est_data_arg` :param float freq_min: The minimum feasible frequency to consider. :param float freq_max: The maximum feasible frequency to consider. :param int n_particles: The number of particles to be used in estimating the precession frequency. :param bool return_all: Controls whether additional return values are provided, such as the updater. :column counts (int): How many counts were observed at the sampled time. :column t (float): The evolutions time at which the samples were collected. :column n_shots (int): How many samples were collected at the given evolution time. :return mean: Bayesian mean estimator for the precession frequency. :return var: Variance of the final posterior over frequency. :return extra: See :ref:`simple_est_extra_return`. Only returned if ``return_all`` is `True`. """ model = BinomialModel(SimplePrecessionModel(freq_min)) prior = UniformDistribution([0, freq_max]) data = load_data_or_txt(data, [ ('counts', 'uint'), ('t', float), ('n_shots', 'uint') ]) outcomes, expparams = data_to_params(data, model.expparams_dtype, cols_expparams={ 'x': (1, 't'), 'n_meas': (2, 'n_shots') } ) return do_update( model, n_particles, prior, outcomes, expparams, return_all )
[docs]def simple_est_rb(data, interleaved=False, p_min=0.0, p_max=1.0, n_particles=8000, return_all=False): r""" Estimates the fidelity of a gateset from a standard or interleaved randomized benchmarking experiment. :param data: Data to be used in estimating the gateset fidelity. :type data: see :ref:`simple_est_data_arg` :param float p_min: Minimum value of the parameter :math:`p` to consider feasible. :param float p_max: Minimum value of the parameter :math:`p` to consider feasible. :param int n_particles: The number of particles to be used in estimating the randomized benchmarking model. :param bool return_all: Controls whether additional return values are provided, such as the updater. :column counts (int): How many sequences of length :math:`m` were observed to survive. :column m (int): How many gates were used for sequences in this row of the data. :column n_shots (int): How many different sequences of length :math:`m` were measured. :column reference (bool): `True` if this row represents reference sequences, or `False` if the gate of interest is interleaved. Note that this column is omitted if ``interleaved`` is `False`. :return mean: Bayesian mean estimator for the model vector :math:`(p, A, B)`, or :math:`(\tilde{p}, p_{\text{ref}}, A, B)` for the interleaved case. :return var: Variance of the final posterior over RB model vectors. :return extra: See :ref:`simple_est_extra_return`. Only returned if ``return_all`` is `True`. """ model = BinomialModel(RandomizedBenchmarkingModel(interleaved=interleaved)) prior = PostselectedDistribution(UniformDistribution([ [p_min, p_max], [0, 1], [0, 1] ] if not interleaved else [ [p_min, p_max], [p_min, p_max], [0, 1], [0, 1] ]), model ) data = load_data_or_txt(data, [ ('counts', 'uint'), ('m', 'uint'), ('n_shots', 'uint') ] + ([ ('reference', 'uint') ] if interleaved else [])) cols_expparams = { 'm': (1, 'm'), 'n_meas': (2, 'n_shots') } if interleaved: cols_expparams['reference'] = (3, 'reference') outcomes, expparams = data_to_params(data, model.expparams_dtype, cols_expparams=cols_expparams ) return do_update( model, n_particles, prior, outcomes, expparams, return_all )